MATH2050C Assignment 1

Section 2.2: 6, 8ab, 9ab, 10ab, 14ab, 15ad, 17, 18; 2.3: 4. 5d.

Hand in: 2.2: 8b, 10b, 14b, 15d, 17; 2.3: 4, 5d by Jan 16, 2024.

Supplementary Problems

The following optional problems are for you to practise mathematical induction.

1. Prove Bernoulli's Inequality:

$$
(1+x)^{n} \geq 1+n x, \quad x \geq-1, n \geq 1
$$

2. Prove Binomial theorem: For real a, b,

$$
(a+b)^{n}=\sum_{k=0}^{n} C_{k}^{n} a^{n-k} b^{k}, \quad n \geq 1
$$

Here $C_{k}^{n}=\frac{n!}{k!(n-k)!}$ and $0!=1$.
3. Prove the GM-AM Inequality: For non-negative $a_{1}, a_{2}, \cdots, a_{n}$,

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right), \quad n \geq 1
$$

and equality in the inequality holds iff all a_{j} 's are equal.

See next page for a note on real numbers.

The Real Number System

In this course the real number system is understood to consist of four components:

1. The set of real numbers, \mathbb{R}, contains all rational numbers \mathbb{Q}.
2. On \mathbb{R} there are two algebraic operations, that is, addition and multiplication.
3. There is an order structure " $<$ " on \mathbb{R}. For any two real numbers a, b, exactly one of the following cases holds: $a<b, b<a$, or $a=b$. \mathbb{R} can be divided in three classes: positive numbers, negative numbers and the zero.
4. (Order Completeness Axiom) For any nonempty subset S of \mathbb{R} which is bounded from above, its supremum exists in \mathbb{R} (not necessarily in S). It implies that for any nonempty subset S of \mathbb{R} which is bounded from below, its infimum exists in \mathbb{R} (not necessarily in S). Note that the supremum/infimum may not belong to S itself.

The definitions of the supremum and infimum can be found in 2.3, Text.

